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Abstract

The elastic interaction of an edge dislocation, which is located either outside or inside a circular inhomogeneity, with

an interfacial crack is dealt with. Using Riemann–Schwarz�s symmetry principle integrated with the analysis of sin-

gularity of the complex potentials, the closed form solutions for the elastic fields in the matrix and inhomogeneity

regions are derived explicitly. The image force on the dislocation is then determined by using the Peach–Keohler

formula. The influence of the crack geometry and material mismatch on the dislocation force is evaluated and discussed

when the dislocation is located in the matrix. It is shown that the interfacial crack has significant effect on the equi-

librium position of the edge dislocation near a circular interface. The results also reveal a strong dependency of the

dislocation force on the mismatch of the shear moduli and Poisson�s ratios between the matrix and inhomogeneity.

� 2003 Published by Elsevier Ltd.
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1. Introduction

The elastic interaction between a dislocation and inhomogeneities is very important in studying the

mechanical behavior of many materials. The study of a dislocation interacting with an inhomogeneity in the

solid mechanics and materials science is motivated by the need for a better understanding of the mechanism

of strengthening and toughening of materials. A comprehensive survey of the theoretical investigation on

this topic has been provided by Dundurs (1969).

Due to its importance, this problem has received much attention during the last several decades. The first

investigation to assess the interaction of a screw dislocation with an inhomogeneity was performed by Head

(1953), who considered a dislocation near an interface between two dissimilar materials. The force on the
dislocation was analyzed and a simple attraction–repulsion criterion was given in the paper. For the
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interaction problem of an edge dislocation near a circular inclusion in fiber-reinforced composites, Dundurs

and Mura (1964) and Dundurs and Sendeckyj (1965) indicated that under certain conditions the dislocation

may even have a stable equilibrium position at a distance from the circular inclusion interface. Smith (1968)

considered the interaction between a screw dislocation and a circular elastic inhomogeneity, and extended
the theory to treat the case of a dislocation interacting with an elliptic hole or a rigid elliptic inhomogeneity

under longitudinal shear. He calculated the interactive stress field on the x-axis. The interaction between a

screw dislocation and an elliptic elastic inhomogeneity had been studied by Gong and Meguid (1994). The

appropriate expressions of the interacting energy and the force on dislocation were explicitly derived in that

article. Luo and Chen (1991) evaluated the interaction energy and the force acting on an edge dislocation

when dislocation was located inside the interphase layer based on a three phase composite cylinder model.

Qaissaunee and Santare (1995) investigated the interaction effect of an edge dislocation, which is located

inside the inhomogeneity or inside the matrix, with an elliptic inclusion based on a three phase elliptic
cylinder model. Xiao and Chen (2000, 2001) considered a screw dislocation and an edge dislocation in-

teracting with a coated circular inclusion, respectively. The force acting on the dislocation was calculated

and the equilibrium positions of the dislocation were discussed for various material property combinations

and variations in coating thickness. In addition, Lung and Wang (1984) and Lee (1987) evaluated the image

force on a screw dislocation near a finite length crack tip and analyzed the influence of the crack length on

the image force.

Interfacial defects, typically interfacial cracks, are produced inevitably in manufacturing and using of

composite materials. Therefore, the investigation on the interaction between a dislocation and an inhomo-
geneity with interfacial defects is of practical importance. Such an investigation can improve the under-

standing of strengthening and hardening mechanism of materials and offer a scientific basis for the

establishment of the interface fracture criterion between dissimilar materials.

The problem of an edge dislocation interacting with a circular interfacial crack is studied in the present

work, where the dislocation is located inside the inhomogeneity or inside the matrix. Using Riemann–

Schwarz�s symmetry principle integrated with the analysis of singularity of complex functions (Toya, 1974;

Liu, 1991), we obtain the closed form solutions. The explicit expressions of the stress functions and the

image dislocation force are derived and the influence of the crack on the force acting on the dislocation is
discussed and shown graphically. When the length of the crack goes to zero, the present solutions de-

generate into ones for the problem of a circular elastic inhomogeneity with a perfect bonding interface

(Dundurs and Mura, 1964; Dundurs and Sendeckyj, 1965).
2. Problem statement and basic formulation

The physical problem to be considered is shown in Fig. 1. Let an infinite matrix S� with the elastic
properties j2 and l2 contain a partially bonded circular inclusion Sþ of a radius R with the elastic properties

j1 and l1, where ljðj ¼ 1; 2Þ is the shear modulus and jj ¼ 3� 4tj for plane strain or jj ¼
ð3� 4tjÞ=ð1þ tjÞ for generalized plane stress conditions, tj is the Poisson�s ratio, respectively. It is assumed

that an interfacial crack lies along an arc L with the end points a and b ða ¼ Reia1 ; b ¼ Reia2Þ in the interface

while along the remaining part of the interface, L0, the inclusion is well bonded to the matrix. An edge

dislocation with Burger�s vector ðbx; byÞ is located at an arbitrary point in the matrix or inside inhomo-

geneity.

Let the center of the circular inhomogeneity be at the origin of the complex plane z ¼ xþ iy and t ¼ Reih

be the points of on the interface. The boundary conditions of the displacement and stress for the present

problem can be expressed as follows:
uþ1 ðtÞ þ ivþ1 ðtÞ ¼ u�2 ðtÞ þ iv�2 ðtÞ t 2 L0 ð1Þ
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Fig. 1. An edge dislocation interacting with a circular interfacial crack.
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rþ
rr1ðtÞ þ isþrh1ðtÞ ¼ r�

rr2ðtÞ þ is�rh2ðtÞ t 2 L0 ð2Þ

and
rþ
rr1ðtÞ þ isþrh1ðtÞ ¼ 0 t 2 L ð3Þ

r�
rr2ðtÞ þ is�rh2ðtÞ ¼ 0 t 2 L ð4Þ
where rrr and srh are the components of the stress in polar coordinates, u and v are the components of the

displacement in the Cartesian coordinates, the subscripts 1 and 2 represent the regions Sþ and S�, the

superscripts + and ) denote the boundary values of the physical quantity as z approaches to the interface

from Sþ and S�, respectively.

The elastic field in the medium may be expressed in term of Muskhelishvili�s complex potentials UðzÞ and
WðzÞ. In the polar coordinates the stress and displacement fields may be expressed as:
rrr þ rhh ¼ 2½UðzÞ þ UðzÞ� ð5Þ

rrr þ isrh ¼ UðzÞ þ UðzÞ � �zzU0ðzÞ � �zz=zWðzÞ ð6Þ

2lðu0 þ v0Þ ¼ iz jUðzÞ
"

� UðzÞ þ �zzU0ðzÞ þ �zz
z
WðzÞ

#
ð7Þ
where u0 ¼ ou=oh, v0 ¼ ov=oh, U0ðzÞ ¼ d½UðzÞ�=dz, the over-bar represents the complex conjugate.
3. Analysis and solutions

3.1. Edge dislocation in the matrix

Consider the problem of an edge dislocation with Burger�s vector ðbx; byÞ located at an arbitrary point z0
inside the region S� (matrix). In the matrix, we define the complex potentials as:
U2ðzÞ ¼ U�
2ðzÞ þ U0ðzÞ z 2 S� ð8Þ

W2ðzÞ ¼ W�
2ðzÞ þW0ðzÞ z 2 S� ð9Þ
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where U0ðzÞ and W0ðzÞ represent the complex potentials for an edge dislocation in an infinite homogeneous

matrix in the absence of the inhomogeneity and U�
2ðzÞ and W�

2ðzÞ refer to the terms of the disturbance of the

complex potentials due to the presence of the inhomogeneity and the interfacial crack.

The complex potentials for an edge dislocation at the point z0 in a homogeneous matrix can be expressed
as:
U0ðzÞ ¼
c2

z� z0
ð10Þ

W0ðzÞ ¼
c2

z� z0
þ c2�zz0
ðz� z0Þ2

ð11Þ
where c2 ¼ l2
pð1þj2Þ

ðby � ibxÞ.
Applying Riemann–Schwarz�s symmetry principle, we extend the definition of the analytical function

U2ðzÞ into the region Sþ across L by introducing (Toya, 1974)
U2

R2

�zz

� �
¼ �U2ðzÞ þ �zzU0

2ðzÞ þ
�zz2

R2
W2ðzÞ ð12Þ
or equivalently, writing R2=z for �zz,
U2ðzÞ ¼ �U2

R2

z

� �
þ R2

z
U0

2

R2

z

� �
þ R2

z2
W2

R2

z

� �
ð13Þ
where U2ðzÞ is holomorphic everywhere in the region Sþ except at the points z ¼ R2=�zz0 and z ¼ 0 where it is

singular. The substitution of Eqs. (8) and (9) into Eq. (13) yields
U2ðzÞ ¼ GðzÞ þ U20ðzÞ ð14Þ

where
GðzÞ ¼ c2
z� z0

þ c2
z
� c2
z� z�

þ c2z
�ðz0 � z�Þ

�zz0ðz� z�Þ2
; z� ¼ R2

�zz0
Functions U1ðzÞ and W1ðzÞ are holomorphic in the region Sþ because there is no point force or dislo-

cation in the inclusion. Similarly, extend the function U1ðzÞ from Sþ to S� by introducing:
U1ðzÞ ¼ �U1

R2

z

� �
þ R2

z
U0

1

R2

z

� �
þ R2

z2
W1

R2

z

� �
ð15Þ
where U1ðzÞ is holomorphic on the entire plane cut along L0 except at the point at infinity.
Taking the complex conjugate of Eqs. (13) and (15), It is found that
W1ðzÞ ¼
R2

z2
U1ðzÞ
�

þ U1

R2

z

� �
� zU0

1ðzÞ
�

ð16Þ

W2ðzÞ ¼
R2

z2
U2ðzÞ
�

þ U2

R2

z

� �
� zU0

2ðzÞ
�

ð17Þ
Substituting Eq. (6) into Eq. (2), and considering Eqs. (3) and (4), the traction continuity condition on the

entire circular boundary can be written as:
½U1ðtÞ þ U2ðtÞ�þ ¼ ½U1ðtÞ þ U2ðtÞ�� t 2 Lþ L0 ð18Þ

It is seen that the function NðzÞ ¼ U1ðzÞ þ U2ðzÞ is holomorphic in the entire plane except at points z ¼ z0,
z ¼ R2=�zz0 and z ¼ 0. According to the generalized Liouville�s theorem, Eq. (18) leads to
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NðzÞ ¼ GðzÞ þ D0 ð19Þ
Comparing Eqs. (14) and (19), we obtain
D0 ¼ �U1ð0Þ ð20Þ
Taking the derivatives with respect to h of Eq. (1), then substituting Eq. (7) into Eq. (1), the displacement

boundary condition can be expressed as:
j1

2l1

Uþ
1 ðtÞ þ

1

2l1

U�
1 ðtÞ ¼

j2

2l2

U�
2 ðtÞ þ

1

2l2

Uþ
2 ðtÞ ð21Þ
Substituting Eq. (19) into Eq. (21), and noting Eqs. (8) and (9), the above equation can be written as

follows:
Uþ
20ðtÞ � gU�

20ðzÞ ¼ hGðtÞ þ KD0 t 2 L0 ð22Þ
where
g ¼ � l2 þ j2l1

l1 þ j1l2

; h ¼ � l1ð1þ j2Þ
l1 þ j1l2

; K ¼ l2ð1þ j1Þ
l1 þ j1l2
Referring to Muskhelishvili (1975), the general solution is given formally by
U20ðzÞ ¼
X0ðzÞ
2pi

Z a

b

hGðtÞ þ KD0

Xþ
0 ðtÞ

dt
t � z

þ X0ðzÞðC0 þ C1zÞ ð23Þ
where X0ðzÞ ¼ ðz� aÞ�
1
2
�ib � ðz� bÞ�

1
2
þib

, b ¼ ln jgj
2p .

The Plemelj function X0ðzÞ is a single-valued branch in the plane cut along L0. The function satisfies the

relation Xþ
0 ðtÞ ¼ gX�

0 ðtÞ on L, and for which
lim
jzj!1

zX0ðzÞ ¼ 1 ð24Þ
The holomorphic function U20ðzÞ vanishes at infinity. Comparing the expansions of Eqs. (8) and (23) at

infinity, and noting Eq. (24), the unknown constant C1 can be determined.
C1 ¼ 0 ð25Þ

The complex potential U2ðzÞ is holomorphic and takes the following form for a large value of jzj
U2ðzÞ ¼
c2
z
þ o

1

z2

� �
ð26Þ
After evaluating the Cauchy integral in Eq. (23), we obtain
U20ðzÞ ¼
hGðzÞ þ KD0

1� g
� X0ðzÞ
1� g

½G0ðzÞ þ G1ðzÞ þ Gz0ðzÞ þ Gz� ðzÞ � ð1� gÞC0� ð27Þ
where G0ðzÞ ¼ hc2
z

1
X0ð0Þ
G1ðzÞ ¼ z
�

� R
2
ðexp½ia1� þ exp½ia2�Þ � iRbðexp½ia1� � exp½ia2�Þ

�
KD0 þ hc2

Gz0ðzÞ ¼
hc2

X0ðz0Þ
1

z� z0
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Gz� ðzÞ ¼
h

X0ðz�Þ
z�ðz0 � z�Þc2
z0ðz� z�Þ2

(
1

�
� ðz� z�ÞX

0
0ðz�Þ

X0ðz�Þ

�
� c2
z� z�

)

Substituting Eq. (27) into Eq. (14), U2ðzÞ can be evaluated:
U2ðzÞ ¼
K

1� g
GðzÞ½ þ D0� �

X0ðzÞ
1� g

G0ðzÞ
�

þ G1ðzÞ þ Gz0ðzÞ þ Gz� ðzÞ � ð1� gÞC0

�
ð28Þ
The substitution of Eq. (28) into Eq. (19) yields:
U1ðzÞ ¼ � h
1� g

½GðzÞ þ D0� þ
X0ðzÞ
1� g

½G0ðzÞ þ G1ðzÞ þ Gz0ðzÞ þ Gz� ðzÞ � ð1� gÞC0� ð29Þ
Expanding U2ðzÞ at jzj ¼ 1 and comparing with Eq. (26), the unknown constant C0 can be determined.
C0 ¼ 0 ð30Þ

Substituting Eq. (29) into Eq. (20), and noting
X0ðzÞ
1� g

1

X0ð0Þ
hc2
z

� 1

1� g
c2
z
¼ hc2

1� g
X 0
0ð0Þ

X0ð0Þ
ð31Þ
at z ¼ 0, we obtain
D0 ¼
QQ1 � Q1

1� Q2
ð32Þ
where
Q ¼ �K
1� g

X0ð0ÞR
1

2
ðexp½ia1�

�
þ exp½ia2�Þ þ ibðexp½ia1� � exp½ia2�Þ

�
� K
1� g

þ 1

Q1 ¼
hc2
1� g

X 0
0ð0Þ

X0ð0Þ
þ hX0ð0Þ

1� g
c2ðz0 � z�Þ
z0X0ðz�Þ

�zz0
R2

"(
þ X 0

0ðz�Þ
X0ðz�Þ

#
þ c2 �

c2
z0X0ðz0Þ

þ c2
z�X0ðz�Þ

)

� h
1� g

c2
z�

�
þ c2ðz0 � z�Þ

z0z�
� c2

z0

�

Once the stress functions U1ðzÞ and U2ðzÞ are known, the stress functions W1ðzÞ and W2ðzÞ may be deter-

mined by Eqs. (16) and (17), respectively. The components of the stress and displacement may also be

determined from Eqs. (5)–(7).
3.2. Edge dislocation inside the inhomogeneity

An edge dislocation with Burger�s vector ðbx; byÞ is located at an arbitrary point z0 inside the region Sþ

(inhomogeneity). In the same manner as in Section 3.1, we define the potentials in the inhomogeneity as

follows:
U1ðzÞ ¼ U�
1ðzÞ þ U0ðzÞ z 2 Sþ ð33Þ

W1ðzÞ ¼ W�
1ðzÞ þW0ðzÞ z 2 Sþ ð34Þ
where U�
1ðzÞ and W�

1ðzÞ will be determined later, and
U0ðzÞ ¼
c1

z� z0
ð35Þ
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W0ðzÞ ¼
c1

z� z0
þ c1�zz0
ðz� z0Þ2

ð36Þ
where c1 ¼ l1
pð1þj1Þ ðby � ibxÞ.

The complex potentials outside the inhomogeneity are holomorphic and take the following forms for a
large value of jzj.
U2ðzÞ ¼
c2
z
þ o

1

z2

� �
; W2ðzÞ ¼

c2
z
þ o

1

z2

� �
ð37Þ
Using the same method as in Section 3.1, the complex potentials inside the inhomogeneity and matrix can

be expressed as follows:
U1ðzÞ ¼ � h
1� g

G�ðzÞ
h

þ D�
0 þ

c2
z

i
þ X0ðzÞ
1� g

G�
0ðzÞ

h
þ G�

1ðzÞ þ G�
z0
ðzÞ þ G�

z� ðzÞ
i

ð38Þ

U2ðzÞ ¼
K

1� g
G�ðzÞ
h

þ D�
0 þ

c2
z

i
� X0ðzÞ
1� g

G�
0ðzÞ

h
þ G�

1ðzÞ þ G�
z0
ðzÞ þ G�

z� ðzÞ
i

ð39Þ
where
G�ðzÞ ¼ c1
z� z0

� c1
z� z�

þ c2z
�ðz0 � z�Þ

z0ðz� z�Þ2
z� ¼ R2

z0

G�
0ðzÞ ¼

hc2
z

1

X0ð0Þ

G�
1ðzÞ ¼ z

�
� R

2
ðexp½ia1� þ exp½ia2�Þ � iRbðexp½ia1� � exp½ia2�Þ

�
KD�

0 þ hc2

G�
z0
ðzÞ ¼ Kc1

X0ðz0Þ
1

z� z0

G�
z� ðzÞ ¼

K
X0ðz�Þ

z�ðz0 � z�Þc1
�zz0ðz� z�Þ2

1

�(
� ðz� z�ÞX

0
0ðz�Þ

X0ðz�Þ

�
� c1
z� z�

)

D�
0 ¼

Q�Q�
1 � Q�

1

1� Q� � Q�

Q� ¼ �K
1� g

X0ð0ÞR
1

2
ðexp½ia1�

�
þ exp½ia2�Þ þ ibðexp½ia1� � exp½ia2�Þ

�
� K
1� g

þ 1

Q�
1 ¼

hc2
1� g

X 0
0ð0Þ

X0ð0Þ
þ X0ð0Þ

1� g
Kc1ðz0 � z�Þ
z0X0ðz�Þ

z0
R2

��
þ X 0

0ðz�Þ
X0ðz�Þ

�
þ hc2 �

Kc1
z0X0ðz0Þ

þ Kc1
z�X0ðz�Þ

�

� h
1� g

c1
z�

�
þ c1ðz0 � z�Þ

z0z�
� c1

z0

�

The stress functions W1ðzÞ and W2ðzÞ may be determined from Eqs. (16) and (17), respectively. The com-

ponents of the stress and displacement may also be determined from Eqs. (5)–(7).
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4. Perturbation stress functions and image force on the dislocation

4.1. Edge dislocation in the matrix

For the dislocation-inclusion-interfacial crack interaction problems, a common measure of the stress

field is the Peach–Keohler force (Hirth and Lothe, 1982), which is a measure of the force on dislocation due

to its interaction with the inclusion and interfacial crack. This force on the dislocation arises from both the

presence of the dislocation and the fact that there exist a material mismatch and an interfacial crack. If

there is no material mismatch and no crack, the force on the dislocation is zero. The image force on the

dislocation is a significant physical quantity for understanding the interacting mechanism of a dislocation

and an inhomogeneity. The image force can be obtained by the Peach–Keohler formula as:
Fx � iFy ¼ s
_
xyðz0Þbx

h
þ r

_
yyðz0Þby

i
þ i r

_
xðz0Þbxx

h
þ s

_
xyðz0Þby

i
ð40Þ
where r
_
x; r

_
y ; s

_
xy are the components of the perturbation stress at the dislocation in the Cartesian coor-

dinates.

Referring to Muskhelishvili (1975), the stress fields are related to the complex potentials through
rxx ¼ Re½2UðzÞ � �zzU0ðzÞ �WðzÞ�

ryy ¼ Re½2UðzÞ þ �zzU0ðzÞ þWðzÞ� ð41Þ

sxy ¼ Im½�zzU0ðzÞ þWðzÞ�

When the edge dislocation is located at the point z0 in the matrix, the perturbation stresses can be evaluated

by the perturbation stress functions, U�
2ðz0Þ, U�0

2 ðz0Þ andW�
2ðz0Þ in the matrix. In terms of Eq. (41) the Peach–

Keohler force can be written as
Fx � iFy ¼
l2ðb2y þ b2xÞ
pð1þ j2Þ

U�
2ðz0Þ þ U�

2ðz0Þ
c2

"
þ �zz0U�0

2 ðz0Þ þW�
2ðz0Þ

c2

#
ð42Þ
According to Qaissaunee and Santare (1995) and from Eqs. (8) and (9), the functions U�
2ðz0Þ, U�0

2 ðz0Þ and
W�

2ðz0Þ may be determined as follows:
U�
2ðz0Þ ¼ lim

z!z0
½U2ðzÞ � U0ðzÞ� ð43Þ

U�0
2 ðz0Þ ¼ lim

z!z0

d½U2ðzÞ � U0ðzÞ�
dz

ð44Þ

W�
2ðz0Þ ¼ lim

z!z0
½W2ðzÞ �W0ðzÞ� ð45Þ
Substituting Eqs. (30) and (32) into Eq. (28), we obtain
U2ðzÞ ¼
hþ 1� g
1� g

c2
z

"
þ c2
z� z0

� c2
z� z�

þ c2z
�ðz0 � z�Þ

z0ðz� z�Þ2

#
þ KD0

1� g
� X0ðzÞ
1� g

hc2R
z

exp
i

2
ða1

�(
þ a2Þ

þ bða2 � a1 � 2pÞ
�
þ KD0zþ hc2 �

R
2
ðexp½ia1� þ exp½ia2�Þ � iRbðexp½ia1� � exp½ia2�ÞKD0

þ hc2
X0ðz0Þ

1

z� z0
þ hc2
X0ðz�Þ

z�ðz0 � z�Þ
�zz0ðz� z�Þ2

1

�
� ðz� z�ÞX

0
0ðz�Þ

X0ðz�Þ

�
� hc2
X0ðz�Þ

1

z� z�

)
ð46Þ
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Substituting Eq. (28) into (17), we obtain
W2ðzÞ ¼
R2

z2
hþ 1� g
1� g

"
2c2
z

(
þ c2
z� z0

� c2
z� z�

þ c2z
�ðz0 � z�Þ

z0ðz� z�Þ þ c2z
R2

þ c2z
R2 � z0z

� c2z0z
R2ðz0 � zÞ

þ c2ðz0z0 � R2Þz2

R2z0ðz� z0Þ2
þ c2z

ðz� z0Þ2
þ 2c2z

�ðz0 � z�Þz
z0ðz� z�Þ3

� c2z

ðz� z�Þ2

#
þ KðD0 þ D0Þ

1� g

� X0ðzÞ
1� g

2hc2R
z

exp
i

2
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where
X 0
0ðz�Þ

X0ðz�Þ
¼ � z� � ðaþ bÞ þ 2iða� bÞ

2ðz� � aÞðz� � bÞ ; z1 ¼
R2

z

Letting a ¼ 0 and noting
X0ðzÞ ¼
g

z� R
z 2 Sþ ð48Þ

X0ðzÞ ¼
1

z� R
z 2 S� ð49Þ
Eqs. (46) and (47) are reduced to the solutions of the interaction problem between an edge dislocation and a

circular inhomogeneity, which are in agreement with the reduced results of Xiao and Chen (2000). Here we
omit details for saving space.
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Substituting Eqs. (46) and (47) into Eqs. (43)–(45), the perturbation stress functions can be expressed as:
U�
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Substituting Eqs. (50)–(52) into Eq. (42), a closed form expression of the force on the dislocation can be

obtained.

If a1 ¼ a2 ¼ 0, and the edge dislocation with the Burger�s vector ðbx; 0Þ is located at any point x0 ðx0 > RÞ
on the x-axis, the force on the dislocation is reduce to
Fx ¼
�l2b

2
x
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�1

x0
þ x30 þ 2R2x0 þ

R6 � 4R4x20
x30

� �
1

ðx20 � R2Þ2
þ 2R2

x0ðR2 � x20Þ
þ 2R2

x20

" #(

þ ð1þ hÞ R4

x30ðR2 � x20Þ

)
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Fy ¼ 0 ð54Þ
which are in agreement with the results of Dundurs and Mura (1964).
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4.2. Edge dislocation inside the inhomogeneity

Similarly, when the edge dislocation is located at the point z0 in the inhomogeneity, the perturbation

stresses can be evaluated by the perturbation stress functions U�
1ðz0Þ, U�0

1 ðz0Þ and W�
1ðz0Þ in the inhomo-

geneity. In terms of Eq. (41) the Peach–Keohler force can be expressed as
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If a1 ¼ a2 ¼ 0, and the edge dislocation with the Burger�s vector ðbx; 0Þ is located at a point x0 ðx0 < RÞ on
the x-axis, the force on the dislocation can be reduced to Eq. (15) in the paper of Dundurs and Sendeckyj
(1965).
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4.3. Straight crack along the interface of two dissimilar materials

Consider the problem of a straight crack from l1 to l2 on the y-axis which lies along the interface between

two dissimilar materials, as shown in Fig. 2. An edge dislocation with Burger�s vector ðbx; byÞ acts at an
arbitrary point in the medium II. In this case, the solution can be easily derived from our general for-

mulations by letting the radius R of the circular inhomogeneity tend to infinity and the angles a1 and a2
approach to zero such that Ra1 ¼ l1 and Ra2 ¼ l2. Accordingly, the force on the dislocation can be obtained

from Eqs. (50)–(52).
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Substituting Eqs. (59)–(61) into Eq. (42), we obtain the image force on the dislocation due to an in-
teraction with a straight interfacial crack. As far as we can see it is a new solution.
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Fig. 2. An edge dislocation interacting with a straight interfacial crack.
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5. Numerical analysis and discussion

For the convenience of comparing with the previous known solutions, we consider the special case that

an arc-crack is symmetrically placed with respect to the x-axis (a2 ¼ �a1 ¼ a) and an edge dislocation lies
on the x-axis (z0 ¼ x0 > R is a real number) as shown in Fig. 3. Using Eq. (42), the influence of the circular

interfacial crack upon the image force is discussed in this section. We define the normalized force on the

dislocation as
Fx0 ¼ pRð1þ j2ÞF1=l2b
2
x Fy0 ¼ pRð1þ j2ÞF2=l2b

2
y ð62Þ
where F1 is the force on the gliding dislocation bx (Burger�s vector ðbx; 0Þ), and F2 is the force on the climbing

dislocation by (Burger�s vector ð0; byÞ).
In the general plane strain case (j ¼ 3� 4m), the influence of the crack geometry and material properties

on the image force F1 is shown in Figs. 4–6. First, we let j1 ¼ j2 ¼ 1:8. The normalized force Fx0 on the

dislocation versus k ¼ x0=R for different values of m ¼ l1=l2 is depicted in Fig. 4(a) (a ¼ 0) and Fig. 4(b)

(a ¼ 0:1). It is seen that Fx0 is always positive (repels the dislocation in the matrix) for m > 1 and always

negative (attracts the dislocation in the matrix) for m < 1 as a ¼ 0. If a ¼ 0:1 (a crack is present), Fx0 is

always negative for m6 1 and the crack attracts the dislocation. Fx0 is positive first, then becomes negative

when the edge dislocation approaches to the interface from infinity along the x-axis for m > 1. There is an

equilibrium position on the x-axis and the image force is equal to zero at that point. The image force also
achieves a positive maximum value (repulsion force) on the x-axis. For all values of m (m6 1 and m > 1),

the magnitude of the attraction force on the dislocation will be a large value when the dislocation ap-

proaches to the interfacial crack. Comparison between Fig. 4(a) and (b) shows that the interfacial crack

attracts the edge dislocation in the matrix.

Let j1 ¼ 1:8 and m ¼ 1. The normalized force Fx0 on the dislocation versus k ¼ x0=R for different j2 is

plotted in Fig. 5(a) (a ¼ 0) and in Fig. 5(b) (a ¼ 0:1). It is seen that Fx0 is always positive (repels the dis-

location in the matrix) as j2 > j1 and always negative (attracts the dislocation in the matrix) as j2 < j1 in

the case of a ¼ 0. If a ¼ 0:1 (a crack is present), the force on the dislocation is always negative, which differs
from the variations of the curve in Fig. 4(b). From Figs. 4 and 5, we see that as k ¼ z0=R > 2, the material

elastic constants and crack dimension have little effect on the dislocation force.

The variation of the normalized force Fx0 acting on the dislocation with the crack radius a is plotted in

Fig. 6 for different values of m (k ¼ 1:1 and j1 ¼ j2 ¼ 1:8). It is seen that when m > 1, the interfacial crack

has significant influence upon the force on the dislocation and there exists a critical value of the crack radius
x
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Fig. 3. An edge dislocation interacting with an interfacial crack symmetrically with respect to the axis.
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Fig. 4. Normalized force Fx0 versus k ¼ x0=R for various values of m as (a) a ¼ 0 and j1 ¼ j2 ¼ 1:8 and (b) a ¼ 0:1 and j1 ¼ j2 ¼ 1:8.
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altering the direction of the image force. The attraction force on the dislocation will increase with the

increment of the crack radius.

The influence of the crack dimensions and elastic material constants on the image force F2 is shown in

Figs. 7–9. Let j1 ¼ j2 ¼ 1:8. The normalized force Fy0 on the dislocation versus k ¼ x0=R for different
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Fig. 7. Normalized force Fy0 versus k ¼ x0=R for various values of m as (a) a ¼ 0:1 and j1 ¼ j2 ¼ 1:8 and (b) a ¼ 0:2 and j1 ¼ j2 ¼ 1:8.
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Fig. 8. Normalized force Fy0 versus k ¼ x0=R for various values of j2 as (a) a ¼ 0 and j1 ¼ 1:8, m ¼ 1 and (b) a ¼ 0:2 and j1 ¼ 1:8,
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Fig. 9. Normalized force Fy0 versus a for various values of m as k ¼ z0=R ¼ 1:1 and j1 ¼ j2 ¼ 1:8.
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values of m ¼ l1=l2 is depicted in Fig. 7(a) (a ¼ 0) and in Fig. 7(b) (a ¼ 0:2). It is found that, differing from

Fx0, for all values of m (m6 1 and m > 1), Fy0 always has an equilibrium point on the x-axis when the edge

dislocation approaches to the interface from infinity in the case a ¼ 0. As a ¼ 0:2, the variations shown in

Fig. 7(b) are in the similitude of Fx0. However, the variation of Fy0 is more acute than those of Fx0 when the
distance between the edge dislocation and the interface is very small. Similarly, the attraction force on a

dislocation will become very large when the dislocation approaches to the interfacial crack for all values of

m (m6 1 and m > 1).

Let j1 ¼ 1:8 and m ¼ 1. The normalized force Fy0 on the dislocation versus k ¼ x0=R for different values

of j2 is plotted in Fig. 8(a) (a ¼ 0) and in Fig. 8(b) (a ¼ 0:2). Similarly, Fy0 is always positive (repels dis-

location in the matrix) for j2 > j1 and always negative (attracts the dislocation in the matrix) for j2 < j1 as

a ¼ 0. As a ¼ 0:2 and j2 > j1, the variations of Fy0 differs from those of Fx0 shown in Fig. 5(b). There is an

equilibrium position on the x-axis whereFy0 is equal to zero. In addition, following the discussion in the
above paragraph, results similar to those in Fig. 8 can be obtained.

The variation of the normalized force Fy0 acting on a dislocation with the crack radius a is plotted in Fig.

9 for different values of m (k ¼ 1:1 and j1 ¼ j2 ¼ 1:8). It is shown that when m > 1, the interfacial crack has

significant influence upon the force on a dislocation and there exists a critical value of the crack radius

altering the direction of the image force. The attraction force on a dislocation will increase with the increase

of the crack radius; however it will decrease as the crack radius a varies from 0.06 to 0.14.
6. Conclusions

Using Muskhelishvili�s complex variable method, the closed form complex potentials are obtained for an

edge dislocation, which is located either inside the matrix or inhomogeneity, interacting with an interfacial
crack in this paper. Analytical expressions of the image force on the dislocation are also given. In Section 5,

the influence of the crack geometry and material mismatch on the dislocation force is discussed graphically.

The results indicate that the interfacial crack plays an important role in the Peach–Keohler dislocation

force. When the length of a crack goes up to some critical value, the presence of the interfacial crack can

change the interaction mechanism between an edge dislocation and a circular inhomogeneity. The closed

form solutions of Eqs. (28), (29) and (38), (39) can be used as Green�s functions to solve the problem of

interaction between an interfacial crack and an arbitrary shape crack inside the matrix or inhomogeneity.
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