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Abstract

The elastic interaction of an edge dislocation, which is located either outside or inside a circular inhomogeneity, with
an interfacial crack is dealt with. Using Riemann—Schwarz’s symmetry principle integrated with the analysis of sin-
gularity of the complex potentials, the closed form solutions for the elastic fields in the matrix and inhomogeneity
regions are derived explicitly. The image force on the dislocation is then determined by using the Peach—Keohler
formula. The influence of the crack geometry and material mismatch on the dislocation force is evaluated and discussed
when the dislocation is located in the matrix. It is shown that the interfacial crack has significant effect on the equi-
librium position of the edge dislocation near a circular interface. The results also reveal a strong dependency of the
dislocation force on the mismatch of the shear moduli and Poisson’s ratios between the matrix and inhomogeneity.
© 2003 Published by Elsevier Ltd.
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1. Introduction

The elastic interaction between a dislocation and inhomogeneities is very important in studying the
mechanical behavior of many materials. The study of a dislocation interacting with an inhomogeneity in the
solid mechanics and materials science is motivated by the need for a better understanding of the mechanism
of strengthening and toughening of materials. A comprehensive survey of the theoretical investigation on
this topic has been provided by Dundurs (1969).

Due to its importance, this problem has received much attention during the last several decades. The first
investigation to assess the interaction of a screw dislocation with an inhomogeneity was performed by Head
(1953), who considered a dislocation near an interface between two dissimilar materials. The force on the
dislocation was analyzed and a simple attraction—repulsion criterion was given in the paper. For the
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interaction problem of an edge dislocation near a circular inclusion in fiber-reinforced composites, Dundurs
and Mura (1964) and Dundurs and Sendeckyj (1965) indicated that under certain conditions the dislocation
may even have a stable equilibrium position at a distance from the circular inclusion interface. Smith (1968)
considered the interaction between a screw dislocation and a circular elastic inhomogeneity, and extended
the theory to treat the case of a dislocation interacting with an elliptic hole or a rigid elliptic inhomogeneity
under longitudinal shear. He calculated the interactive stress field on the x-axis. The interaction between a
screw dislocation and an elliptic elastic inhomogeneity had been studied by Gong and Meguid (1994). The
appropriate expressions of the interacting energy and the force on dislocation were explicitly derived in that
article. Luo and Chen (1991) evaluated the interaction energy and the force acting on an edge dislocation
when dislocation was located inside the interphase layer based on a three phase composite cylinder model.
Qaissaunee and Santare (1995) investigated the interaction effect of an edge dislocation, which is located
inside the inhomogeneity or inside the matrix, with an elliptic inclusion based on a three phase elliptic
cylinder model. Xiao and Chen (2000, 2001) considered a screw dislocation and an edge dislocation in-
teracting with a coated circular inclusion, respectively. The force acting on the dislocation was calculated
and the equilibrium positions of the dislocation were discussed for various material property combinations
and variations in coating thickness. In addition, Lung and Wang (1984) and Lee (1987) evaluated the image
force on a screw dislocation near a finite length crack tip and analyzed the influence of the crack length on
the image force.

Interfacial defects, typically interfacial cracks, are produced inevitably in manufacturing and using of
composite materials. Therefore, the investigation on the interaction between a dislocation and an inhomo-
geneity with interfacial defects is of practical importance. Such an investigation can improve the under-
standing of strengthening and hardening mechanism of materials and offer a scientific basis for the
establishment of the interface fracture criterion between dissimilar materials.

The problem of an edge dislocation interacting with a circular interfacial crack is studied in the present
work, where the dislocation is located inside the inhomogeneity or inside the matrix. Using Riemann—
Schwarz’s symmetry principle integrated with the analysis of singularity of complex functions (Toya, 1974;
Liu, 1991), we obtain the closed form solutions. The explicit expressions of the stress functions and the
image dislocation force are derived and the influence of the crack on the force acting on the dislocation is
discussed and shown graphically. When the length of the crack goes to zero, the present solutions de-
generate into ones for the problem of a circular elastic inhomogeneity with a perfect bonding interface
(Dundurs and Mura, 1964; Dundurs and Sendeckyj, 1965).

2. Problem statement and basic formulation

The physical problem to be considered is shown in Fig. 1. Let an infinite matrix S~ with the elastic
properties x, and p, contain a partially bonded circular inclusion S* of a radius R with the elastic properties
xy and p,, where p,(j=1,2) is the shear modulus and x; =3 —4v; for plane strain or x; =
(3 —4v;)/(1 4 v;) for generalized plane stress conditions, v; is the Poisson’s ratio, respectively. It is assumed
that an interfacial crack lies along an arc L with the end points @ and b (¢ = Re'™, b = Re™) in the interface
while along the remaining part of the interface, L', the inclusion is well bonded to the matrix. An edge
dislocation with Burger’s vector (b,,b,) is located at an arbitrary point in the matrix or inside inhomo-
geneity.

Let the center of the circular inhomogeneity be at the origin of the complex plane z = x + iy and # = Re'
be the points of on the interface. The boundary conditions of the displacement and stress for the present
problem can be expressed as follows:

ul (1) +ivf (1) = u; (1) +iv5 (1) tel (1)
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Fig. 1. An edge dislocation interacting with a circular interfacial crack.

0,1 (1) + 1t (1) = 0, () +it,p(1) teL (2)
and

o () +ith () =0 teL 3)

0,,t)+it,([t) =0 tel (4)

where ¢, and 1,9 are the components of the stress in polar coordinates, # and v are the components of the
displacement in the Cartesian coordinates, the subscripts 1 and 2 represent the regions ST and S—, the
superscripts + and — denote the boundary values of the physical quantity as z approaches to the interface
from ST and S, respectively.

The elastic field in the medium may be expressed in term of Muskhelishvili’s complex potentials &(z) and
¥(z). In the polar coordinates the stress and displacement fields may be expressed as:

G + o0 = 2[0(z) + O(2)] (3)
O +1it,9 = O(2) + O(z) —29'(z) —2/z¥(2) (6)
2l + ) = iz | kd(z) — BE) + 20 (2) +§ v ) (7)

where v/ = 0u/d0, v = 0v/00, &' (z) = d[®(z)]/dz, the over-bar represents the complex conjugate.

3. Analysis and solutions
3.1. Edge dislocation in the matrix

Consider the problem of an edge dislocation with Burger’s vector (b,, b,) located at an arbitrary point z,
inside the region S~ (matrix). In the matrix, we define the complex potentials as:

Dy(z) = P5(z) + Py(z) z€S™ (8)

Vy(z) = Py(z) + Po(z) ze€ S )
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where @(z) and Py (z) represent the complex potentials for an edge dislocation in an infinite homogeneous
matrix in the absence of the inhomogeneity and @;(z) and ¥5(z) refer to the terms of the disturbance of the
complex potentials due to the presence of the inhomogeneity and the interfacial crack.

The complex potentials for an edge dislocation at the point z; in a homogeneous matrix can be expressed
as:

P(z) = 2 (10)

Po(z) = V2 i 7220 S (11)
z—20 (z—2z)
where 9, = ;2 (b, —iby).
Applying Riemann—Schwarz’s symmetry principle, we extend the definition of the analytical function
®,(z) into the region S* across L by introducing (Toya, 1974)

R? z
@2(z> = —@2(z)+2<15'2(z)+ﬁ‘[’2(z) (12)
or equivalently, writing R?/z for Z,
(R RP— (R’ R __(R?
@2(2)——§D2<—) +_QS’2<_)+_2lIIZ<_) (13)
z z z Z z

where ®,(z) is holomorphic everywhere in the region S* except at the points z = R?/z, and z = 0 where it is
singular. The substitution of Egs. (8) and (9) into Eq. (13) yields

D,(z) = G(z) + Dy(2) (14)
where
q A 3+ ok R2
G(Z): V2 _i_&_ V2 *+yfz (ZO 22)7 Z*:_—
z—zy z z—2Z Zo(z—z*) 2o

Functions @,(z) and ¥,(z) are holomorphic in the region ST because there is no point force or dislo-
cation in the inclusion. Similarly, extend the function &,(z) from S* to S~ by introducing:

—(R*\ R—(R\ R_ (R
O(2) =& — | +— (= | +=7 — 15
©--(3) 54 (5) 50 (%) 9
where @;(z) is holomorphic on the entire plane cut along L’ except at the point at infinity.

Taking the complex conjugate of Eqgs. (13) and (15), It is found that

@) = 5o+ 3 (L) 200 (16)
¥y (2) :f—j {¢2(z)+<152(R72) zq>’2(z)} (17)

Substituting Eq. (6) into Eq. (2), and considering Eqgs. (3) and (4), the traction continuity condition on the
entire circular boundary can be written as:

[@1(t) + Dy (1)) = [@1(¢) + Dy(¢)]” te€L+L (18)

It is seen that the function Z(z) = ®,(z) + @»(z) is holomorphic in the entire plane except at points z = z,
z=R?/z and z = 0. According to the generalized Liouville’s theorem, Eq. (18) leads to
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2() = G(z) + Dy (19)

Comparing Eqgs. (14) and (19), we obtain

Dy = —@,(0) (20)

Taking the derivatives with respect to 0 of Eq. (1), then substituting Eq. (7) into Eq. (1), the displacement
boundary condition can be expressed as:
K1 1 _ K> _ 1
— &)+ —,(t) == D, (t) + =— D} (¢ 21
3 PO+ 5,970 = 3850 45930 (1)

Substituting Eq. (19) into Eq. (21), and noting Egs. (8) and (9), the above equation can be written as
follows:

D5, (1) — g®5(z) = hG(t) + KDy te L (22)
where

_ etk hi_ﬂl(l""@) K7N2(1+’C1)

+ K o+ Ky TS
Referring to Muskhelishvili (1975), the general solution is given formally by

a(e) =50 [ PEOEER oo+ o (23)

where Xy(z) = (z—a) T (z— b) T, p = lulsl
The Plemelj function X;(z) is a single-valued branch in the plane cut along L'. The function satisfies the
relation X, (#) = gX; (¢) on L, and for which
‘l‘im zXo(z) =1 (24)
The holomorphic function @,(z) vanishes at infinity. Comparing the expansions of Eqgs. (8) and (23) at
infinity, and noting Eq. (24), the unknown constant C; can be determined.

C, =0 (25)
The complex potential @,(z) is holomorphic and takes the following form for a large value of |z]
(L
b,(z) = . +0<22> (26)

After evaluating the Cauchy integral in Eq. (23), we obtain
hG(Z) + KDO . Xo(Z)

Pa) = LI T (6G,(2) + Gl + G 2) + 6o ) = (1~ )Gl 27)
where Gy(z) = 2 50

Guc(2) = | (explion] + explioa]) — iRB(explios] — explizs]) | KDy +

Gylr) = 2]
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Gofz) = {f@—fmb_@_ﬂxww} , }

:Xo(z*) Z_O(z—z*)2 Xo(z*) oz

Substituting Eq. (27) into Eq. (14), @,(z) can be evaluated:

K Xo(z
2:(0) = 12— [66)+ Di] T2 [Go(2) + 6 2) + G 2) + 6o ) — (1 - 9)C) (28)
The substitution of Eq. (28) into Eq. (19) yields:
h Xo(Z)
@®:—ﬁEWﬂHM+FgM@+%@+%@+@¢%ﬂ—@% (29)
Expanding ®,(z) at |z| = oo and comparing with Eq. (26), the unknown constant C, can be determined.
C =0 (30)

Substituting Eq. (29) into Eq. (20), and noting
Xo(z) 1 hy, 19, hy, X5(0)

1—gX0) z 1—gz 1—gX0) (1)
at z = 0, we obtain
00 -0
D() = 11_7Q21 (32)
where
_ K orl e . : . . K
0 = Xu(O)R 5 (explio] + expli) + iptexplon] - explin))] — =+
_ hyy X0(0) | hXo(0) ) a(z0 —2) | 20 | XG(2) n 72
Ql - 1— g X()(O) + 1-— g { EoXo(Z*) R? +X0(Z*)‘| + & Z()X()(Zo) +Z*XQ(Z*) }

SN P C ) B
l—g|z Zoz* Zo

Once the stress functions @;(z) and @,(z) are known, the stress functions ¥,(z) and ¥,(z) may be deter-

mined by Egs. (16) and (17), respectively. The components of the stress and displacement may also be

determined from Egs. (5)—(7).

3.2. Edge dislocation inside the inhomogeneity

An edge dislocation with Burger’s vector (b, b,) is located at an arbitrary point z, inside the region S*
(inhomogeneity). In the same manner as in Section 3.1, we define the potentials in the inhomogeneity as
follows:

Oy(z) = Dj(z) + Pp(z) ze€S* (33)

P (z) = Wi(z) + Wolz) ze€ST (34)
where @](z) and ¥](z) will be determined later, and

Byz) = (35)

Z—Z
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_ .
Y1 n 7120 .
(z—zp)
where y, = 1L (b, — iby).
The complex potentials outside the inhomogeneity are holomorphic and take the following forms for a
large value of |z|.

Qz(z)zy;z—&—o(l), 'I’z(z)zﬁ—&—a(l) (37)

72

T()(Z) =

Z—2Z

(36)

Using the same method as in Section 3.1, the complex potentials inside the inhomogeneity and matrix can
be expressed as follows:

y(z) = — 1hfg (6@ +D;+2] + f”_(z (Gy(2) + Go() + G,y (2) + G (38)

() = 1% (6@ +D+ 2] - f‘)(z (Gy(2) + GLL(2) + G, () + G (2)] (39)
where

-2 TR

Gol) = % XOI(O)

G’ (2) = [z - g (explioy] + explion]) — IRB(explicy] — exp[iuz])]KDg + hy,

* _ Ky 1
C(2) Xo(z0) z— 2o
s _ K Z*(ZO_Z*)/1|: o ok (;(Z*):| 1
GZ*(Z)XO(M{ w2y L5 xe) —}
X Q* ko *
DO l_Q]* * é*
K orl e 1)t 8o . K,
0" = = XOR| 3 (expls] + explios]) + iexplin] — explon) | - = +

.y X5(0)  Xo(0) [Kyi(z0 —27) [20 | Xp(2)
QI - + - * _2+ *
1 —gXo(O) 1 —g Z()Xo(Z ) R Xo(Z )
__k [V_IJFM_E}
l—gl|z Zoz* 2

]Jrhyz

The stress functions ¥,(z) and ¥,(z) may be determined from Eqs. (16) and (17), respectively. The com-
ponents of the stress and displacement may also be determined from Egs. (5)—(7).
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4. Perturbation stress functions and image force on the dislocation
4.1. Edge dislocation in the matrix

For the dislocation-inclusion-interfacial crack interaction problems, a common measure of the stress
field is the Peach—Keohler force (Hirth and Lothe, 1982), which is a measure of the force on dislocation due
to its interaction with the inclusion and interfacial crack. This force on the dislocation arises from both the
presence of the dislocation and the fact that there exist a material mismatch and an interfacial crack. If
there is no material mismatch and no crack, the force on the dislocation is zero. The image force on the
dislocation is a significant physical quantity for understanding the interacting mechanism of a dislocation
and an inhomogeneity. The image force can be obtained by the Peach—Keohler formula as:

Fo=iF, = [Tu@)be + a(20)by| +i]0:(z0)ba + To(z0)b] (40)

where o, Ey, ?xy are the components of the perturbation stress at the dislocation in the Cartesian coor-
dinates.
Referring to Muskhelishvili (1975), the stress fields are related to the complex potentials through

u = Re[20(z) — 20 (2) — P(2)]
6,y = Re[20(2) +20/(2) + V() (41)

Ty, = Im[Z®'(2) + P(2)]

When the edge dislocation is located at the point z, in the matrix, the perturbation stresses can be evaluated

by the perturbation stress functions, ®5(zy), ®5'(zo) and ¥;(zo) in the matrix. In terms of Eq. (41) the Peach—
Keohler force can be written as

F_iF — (b + B7) | @5(20) + P5(z0) +50‘P§'(Zo) + ¥5(z0)

C (k) 7 i3

(42)

According to Qaissaunee and Santare (1995) and from Egs. (8) and (9), the functions @;(zy), @5 (zo) and
¥’ (zo) may be determined as follows:

P3(20) = lim[P2(z) — Po(2)] (43)

d[®y(z) — o(2)]

@3 (z0) = lim S22 (44)
lP;(Z()) = llm[le(Z) — lP()(Zﬂ (45)

z—2)

Substituting Egs. (30) and (32) into Eq. (28), we obtain

@
2(2) l—g z  z—2z z—z*+%(z_z*)2

Cht+l—g|n m 72, 722 (20— 2")
e ——|— — —
l-g 1-g 2

KD X hy,R i
2 O(Z){ /22 exp{ (o0 + o02)

+ Py — oy — 271)} + KDyz + hy, — % (explioy] + explion]) — iRP(explio] — explion]) KDy

h"/z 1 h% Z*(Zo —Z*) e Xé(z*) B hyz 1
Xo(Z()) Z— 2 XO(Z*) Z(](Z —Z*)z |:1 ( )X()(Z*):| X()(Z*) Z — 7* } (46)
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Substituting Eq. (28) into (17), we obtain

R|h+1-g
o

%—F V2 N +%Z*(ZO—Z*) Y2z NZ  DEeZ
z z—zy z—2z" Zo(z—2z¥) R> R*—Z3z Rz —z)

G S CA PR i Rt S R v ]+K<Do+170>

Rzy(z—z)  (z—2z) Z(z — )’ - (z—z)° l-g

z

Xo(2) [2hy2R
—-C
l-g

Xp B (o0 + 02) 4 Blota — oy — 27f)} + KDoz + hy, — (R — 2) (% explion |

L by, 1 by, oz
+ < explioy| +1pexplia;| — 1 explioy| | +

5 exlie] + iexplio] — pexpiie ) + s g 2
hy, z(z0—2")  hyy 2'(20 —2") Xo(2") | 2hy; Z(z20 —27)z
Xo(z) H(z —z7)* Xo(z) Zo(z —2*) Xo(z*)  Xo(z) Z(z —z¢)°

iy (20 —2)z Xo(2) Ay, z  hy 1 ]
Xo(z*) Z—O(Z_Z*)2 Xo(z*)  Xo(z*) (z—z*)2 Xo(z*) z—z*
X hy,R —1 _
— O(Zl> 2 eXp |:1 (061 + OCQ) + ﬁ(a2 — 0 — 27T):| +KD021 +h%
1 - g Z1 2
1 . 1 . . . . . — hy; 1
— R| = exp|—10y| + = exp|—10n| — 1 exp|—1a,| + 1f exp|—1xz| | KDy + —
(5 explin] + 5 expli] — Bespl—im] + pexpl—in] ) D) +
hyy, F@-F) by FG-F)KE)  hm |
Xo(2) 2oz — ) Xo(z*) 20(z1 = 2°) Xo(z*)  Xo(z¥) 21 — 2°
X/ hy,R i
+ﬂ [/—2 exp [l (o1 + o) + Blog — oy — Zﬂ)] + KDoz + hy,
l—g| z 2
— R( L explion] + L explisn] + iBexpfin] — ifexplin] )KDo + 72 1
2 p % 2 p % p ! p 2 0 Xo(Zo) Z—2Z
hy;  z%(zg — 2¥) hy, z4(zo — z*) X§(z%) hy, 1
2 — - " (47)
Xo(z¥) Zo(z — z¥) Xo(z¥) Zo(z — z¢) Xo(z*) Xo(z¥) z—z*
where
X;(z) z* — (a+b) +2i(a —b) R?
= — Z] = —
Xo(z) 2 —a)zr—b) 'z
Letting = 0 and noting
X()(Z) = Z—LR zE S+ (48)
1 _
Xoz)=—— z€S§ (49)
z—R

Egs. (46) and (47) are reduced to the solutions of the interaction problem between an edge dislocation and a
circular inhomogeneity, which are in agreement with the reduced results of Xiao and Chen (2000). Here we
omit details for saving space.
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Substituting Eqgs. (46) and (47) into Egs. (43)—(45), the perturbation stress functions can be expressed as:

K } 24 hy,R i
®;(z0) = Pj PR ) +D0] —% [')—2 exp B (o 4+ 02) + Plog — oy — 2n)]

l—glzo zo—2z" Zo(zo —z* 1 Z

1 . 1 : . . . .
+ KDyzy + hy, — R <— explion] + = explion] +if expliey| — iff exp[locz])KDo

2 2
i, z W 2 X)) k] hyy Xi(20)
Xo(z¥) Zo(zo — z¢)  Xo(z¥) Zo Xo(z¥)  Xo(z¥) zo — z 1 — g Xo(zo)

ln+ ” 275 ] %%WW%

z (z9—z*)° 72_0(20 —z+)? l-g|

exp B (o0 4+ 02) 4 Blota — oy — 2n)}

1 . 1 . . . . .
+ DoKzy + hy, — R (2 explion] + 5 explios] + if explioy] — if exp[locz])KDO

h% z* h% z* Xé(z*) h'})z 1 :l X()(Zo) h’yzR |:1
- = - - - exp |5 (o + o
%) 2] T B X ) m—r 1-g| =z Pz t®)
2y, z Wy, Xi(z) 2
+ Boy — oy — 2m) | + KDy —
ﬁ( 2 1 ):| 0 Xo(Z*) Z_O(ZO _Z*)Z XO(Z*) Xo(Z*) %(ZO . Z*)
hy, 1 hy, Xé’(zo)
+ - 51
Xo(z*) (2 —z*)zl 1 — g 2Xy(z) (51)

y R* . . R ( K V22 V220  —
V5 (z0) = 72 | D5 (20) — 20P% (20) ] + { (RVZO + sl + Do)

2 2 — 2
G g 1—g —z0Z0 R

 Xo(R?/z) lhﬁzo exp [;i ’

R
(O(] + 0(2) + B(OCZ — o — 27'[):| —+ Z—KDO —+ h%
0

l1—g R 2

h% Zy
Xo(Z()) R? — Z0Zo

1 . 1 . . . . . —
_ R<2 exp[—ioy] + 3 exp[—io,] —ifexp[—ix ] + 1ﬁexp[1a2]>KD0 +

Wy Xo(R/z0) | 1a(z0%0 — R?) @} L2 vA

4 S22 52
1 — g Xo(R?/z) R%z, R? Zo z3 (52)

Substituting Egs. (50)—(52) into Eq. (42), a closed form expression of the force on the dislocation can be
obtained.

If oy = ap = 0, and the edge dislocation with the Burger’s vector (b,, 0) is located at any point xy (xo > R)
on the x-axis, the force on the dislocation is reduce to

— i, b? n\ |-1 ; 5 RO — 4R 1 2R? 2R?
F=—"2x J(1-Z2)|—+(x+2R —
(1l + x2) { ( g> X0 Tt At xp (x3 — R?) +x0(R2 —x3) * x3
R4
1+ h) s 53
Hih o .
E=0 (54)

which are in agreement with the results of Dundurs and Mura (1964).
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4.2. Edge dislocation inside the inhomogeneity

Similarly, when the edge dislocation is located at the point z, in the inhomogeneity, the perturbation
stresses can be evaluated by the perturbation stress functions ®](z), ®}'(zo) and ¥j(z) in the inhomo-
geneity. In terms of Eq. (41) the Peach—Keohler force can be expressed as

o 1 (b + BY) | @5 (z0) + B (z0) +Zodi’l"(zo) + ¥i(z0) (55)
o a4 k) M1 i
where
h 17, 71 iz Xo(z0) hy,R i
@ (29) = — 2 _ D; a2
1(20) I—¢ [ZO p— +z_0(zo e g el exp |5 (o + o) + Pty — oy — 2)
1 . 1 . . .
+ KDjzo + hy, — R(2 expliog] + 3 explion] + if expliog] — if explion] >KD
Kn_r KR EE) Kn L], do K 56
X()(Z*) Z_()(Zo — Z*) X()(Z*) Z_()X()(Z*) X()(Z*) zo — Z* 1- gX()( ())
h Y Y 2.z X (z0) [hy,R i
D (z)=———| -2+ L - ! +=2 2= exp |~ (o + o) 4 Bo — oy — 27
1(0) 1g[ Z% (ZO—Z*)2 Z_O(ZO—Z*)Z lfg Z p 2( 1 2) ﬁ( 2 1 )

1 . 1 . . . . .
+ KDgyzo + hy, — R (E explicn] + 3 explion] +iffexplion] —iff exp[locz])KD;

Ky( z" Ky Z_*Xé(Z*)_ K7y, 1 Xo(z0) R 1
P ) =) ) R KE) G-z 1-g| =z SPlpmT®)
2K, z* Ky Xi(z) =z Ky, 1
+ B(oty — oy —27) | + KD} — — +
.[))( 2 1 ):| 0 XO( ) ( 20— 2" ) XO(Z*) Xo(z*) Z()(Z—Z*) XO(Z*) (ZO —Z*)Z
Kyl X(;I(ZO) (57)

1 — g 2Xy(z0)

2

R R [ —h V120 A5, 12%o0
lI/* I (D* _ (p*/ 1 D* 2_
1(20) 2 [@}(20) — 209 (20)] {1 — <R72 —m Dt

2

X.(R2 o ) G—
+—°( /%) [ 1220 exp [2 (1 +02) + Blon — o — ZR)} + KDy +
0

l—g R
— R = _ —_ _ _ _ _ KD
(2 exp[—io| + 3 exp[—ioy] — if exp[—ioy] + ifexp| 1a2]) B +X_—O(ZO) Fre——
KT Xy(R/20) 71207 — B) y—} R (58)
1- g YO(RZ/Z()) R220 R? Zy Z(Z)

If oy = a, = 0, and the edge dislocation with the Burger’s vector (b,,0) is located at a point xy (xo < R) on
the x-axis, the force on the dislocation can be reduced to Eq. (15) in the paper of Dundurs and Sendeckyj

(1965).
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4.3. Straight crack along the interface of two dissimilar materials

Consider the problem of a straight crack from /; to /, on the y-axis which lies along the interface between
two dissimilar materials, as shown in Fig. 2. An edge dislocation with Burger’s vector (b,,b,) acts at an
arbitrary point in the medium II. In this case, the solution can be easily derived from our general for-
mulations by letting the radius R of the circular inhomogeneity tend to infinity and the angles «; and o,
approach to zero such that Ra; = [} and Ra, = [,. Accordingly, the force on the dislocation can be obtained
from Egs. (50)—(52).

K %=1 Xolzo) hy, hy; 1 hy,  Xi(20) hy, 1
@3 (z0) = =2 — =t hyy = — s o —
2( 0) 1— g2y — 2y 1-— g 2 X()(ZO) (Zo — Z()) Xo(Z()) Xo(Z()) Xo(Z()) Zo — 29
_ hyy X(20) (59)
1 — g Xo(z0)
K 7 25 Xi(20) [ hys hyy 1 hyy  Xi(%0)
Cb*/ 70) = _ _ 70 2y h + _ 0
2(20) =15 LZO A -7 1-¢l ¢ "Tx® -2 %E@) %)
_ hy, 1 } _Xo(zo) % _ 2hy, 1 n hy, X;(z0) 1
Xo(Z) 20 —Z0) 1-g |g20 Xo(R) (z0 —2)° Xo(20) Xo(Z0) (20 — Z0)
hyZ 1 hVZ X(;/(ZO) 60
— 2| 1 _ (60)
Xo(20) (20 — ) 1 — g 2X,(z)
. -2, 1% ) K )
b4 =——=—-"=4 — 20D, — | ==+ =
2(20) 20 23 T P3(E0) 2@ (a0) + l-¢ Z% — 2020 " 20
_ Xo(=2) —@+h_2+ fn 2 Wy Xi(z) | 1ae0 —%) T (61)
l-g g Xo(z0) 20 — 20| 1 — g Xo(20) 20Z0 2y

where Xo(Z()) = (Zo — ll)%liw(Zo — 12)%1“/;
Substituting Eqgs. (59)-(61) into Eq. (42), we obtain the image force on the dislocation due to an in-
teraction with a straight interfacial crack. As far as we can see it is a new solution.

y
Clmm) | (k)
I
E 0 i X
' h :
s s

Fig. 2. An edge dislocation interacting with a straight interfacial crack.
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5. Numerical analysis and discussion

For the convenience of comparing with the previous known solutions, we consider the special case that
an arc-crack is symmetrically placed with respect to the x-axis (¢, = —o; = ) and an edge dislocation lies
on the x-axis (zg = xo > R is a real number) as shown in Fig. 3. Using Eq. (42), the influence of the circular
interfacial crack upon the image force is discussed in this section. We define the normalized force on the
dislocation as

Fo=mR(1 + 12)F /1b; - Fo = 7R(1 + 16:) B/ 1b; (62)

where Fj is the force on the gliding dislocation b, (Burger’s vector (b,,0)), and F; is the force on the climbing
dislocation b, (Burger’s vector (0, b,)).

In the general plane strain case (x = 3 — 4v), the influence of the crack geometry and material properties
on the image force F; is shown in Figs. 4-6. First, we let x; = x, = 1.8. The normalized force F}, on the
dislocation versus A = xo/R for different values of m = u,/p, is depicted in Fig. 4(a) (« = 0) and Fig. 4(b)
(x=0.1). It is seen that Fy, is always positive (repels the dislocation in the matrix) for m > 1 and always
negative (attracts the dislocation in the matrix) for m < 1 as o = 0. If o = 0.1 (a crack is present), Fy is
always negative for m < 1 and the crack attracts the dislocation. F} is positive first, then becomes negative
when the edge dislocation approaches to the interface from infinity along the x-axis for m > 1. There is an
equilibrium position on the x-axis and the image force is equal to zero at that point. The image force also
achieves a positive maximum value (repulsion force) on the x-axis. For all values of m (m <1 and m > 1),
the magnitude of the attraction force on the dislocation will be a large value when the dislocation ap-
proaches to the interfacial crack. Comparison between Fig. 4(a) and (b) shows that the interfacial crack
attracts the edge dislocation in the matrix.

Let x; = 1.8 and m = 1. The normalized force F,, on the dislocation versus 1 = x,/R for different x; is
plotted in Fig. 5(a) (« = 0) and in Fig. 5(b) (¢ = 0.1). It is seen that F}, is always positive (repels the dis-
location in the matrix) as x, > x; and always negative (attracts the dislocation in the matrix) as x, < K in
the case of « = 0. If & = 0.1 (a crack is present), the force on the dislocation is always negative, which differs
from the variations of the curve in Fig. 4(b). From Figs. 4 and 5, we see that as 4 = zy/R > 2, the material
elastic constants and crack dimension have little effect on the dislocation force.

The variation of the normalized force F}, acting on the dislocation with the crack radius « is plotted in
Fig. 6 for different values of m (1 = 1.1 and x| = i, = 1.8). It is seen that when m > 1, the interfacial crack
has significant influence upon the force on the dislocation and there exists a critical value of the crack radius

\y
s i
E st R b i
! i 1%
: 0Nl X
i 1(t,x) Ja E
PN () |

____________________________

Fig. 3. An edge dislocation interacting with an interfacial crack symmetrically with respect to the axis.
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Fig. 4. Normalized force Fy versus 4 = xo/R for various values of m as (a) o = 0 and k; = k, = 1.8 and (b) « = 0.1 and x; =k, = 1.8.
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Fig. 5. Normalized force Fy versus A = xo/R for various values of x, as (a) « =0 and x; = 1.8, m =1 and (b) « = 0.1 and x; = 1.8,
m=1.
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Fig. 6. Normalized force F, versus « for various values of m as A =zy/R = 1.1 and k; =k, = 1.8.
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altering the direction of the image force. The attraction force on the dislocation will increase with the
increment of the crack radius.

The influence of the crack dimensions and elastic material constants on the image force / is shown in
Figs. 7-9. Let x; = x, = 1.8. The normalized force F,, on the dislocation versus 1 =x,/R for different

—a—m=5 F 6 —a—m=5 [ |
FyO 0.4+ —e— m=2 ¥ —e—m=2
4,
m=1 m=1
0.24 —v— m=0.7 2 —v—m=0.7
m=0.5 m=0.5
0.0- —v ey o
0.2 27
44
0.4
- -6+ T T T
1.0 3.0 1.0J 1.5 2.0 25 3.0
@ Iy (b) A

Fig. 7. Normalized force F,y versus 4 = xo/R for various values of m as (a) o = 0.1 and k; = x, = 1.8 and (b) « = 0.2 and k; = k, = 1.8.
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Fig. 8. Normalized force F} versus 1 = x(/R for various values of x; as (a) x=0and x; = 1.8, m =1 and (b) « = 0.2 and x; = 1.8,
m=1.
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0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 9. Normalized force F}, versus o for various values of m as A =zy/R =1.1 and x; = x, = 1.8.
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values of m = u, /u, is depicted in Fig. 7(a) (« = 0) and in Fig. 7(b) (o = 0.2). It is found that, differing from
Fy, for all values of m (m <1 and m > 1), F, always has an equilibrium point on the x-axis when the edge
dislocation approaches to the interface from infinity in the case & = 0. As o = 0.2, the variations shown in
Fig. 7(b) are in the similitude of F,. However, the variation of F,y is more acute than those of F,y when the
distance between the edge dislocation and the interface is very small. Similarly, the attraction force on a
dislocation will become very large when the dislocation approaches to the interfacial crack for all values of
m (m<1and m > 1).

Let x; = 1.8 and m = 1. The normalized force F}y on the dislocation versus A = x,/R for different values
of k5 is plotted in Fig. 8(a) (x = 0) and in Fig. 8(b) (¢ = 0.2). Similarly, F}, is always positive (repels dis-
location in the matrix) for x, > x; and always negative (attracts the dislocation in the matrix) for k, < x; as
o=0.Asa=0.2and k, > K, the variations of F, differs from those of F,, shown in Fig. 5(b). There is an
equilibrium position on the x-axis whereF,, is equal to zero. In addition, following the discussion in the
above paragraph, results similar to those in Fig. 8 can be obtained.

The variation of the normalized force £}, acting on a dislocation with the crack radius « is plotted in Fig.
9 for different values of m (4 = 1.1 and k; = k, = 1.8). It is shown that when m > 1, the interfacial crack has
significant influence upon the force on a dislocation and there exists a critical value of the crack radius
altering the direction of the image force. The attraction force on a dislocation will increase with the increase
of the crack radius; however it will decrease as the crack radius « varies from 0.06 to 0.14.

6. Conclusions

Using Muskhelishvili’s complex variable method, the closed form complex potentials are obtained for an
edge dislocation, which is located either inside the matrix or inhomogeneity, interacting with an interfacial
crack in this paper. Analytical expressions of the image force on the dislocation are also given. In Section 5,
the influence of the crack geometry and material mismatch on the dislocation force is discussed graphically.
The results indicate that the interfacial crack plays an important role in the Peach-Keohler dislocation
force. When the length of a crack goes up to some critical value, the presence of the interfacial crack can
change the interaction mechanism between an edge dislocation and a circular inhomogeneity. The closed
form solutions of Egs. (28), (29) and (38), (39) can be used as Green’s functions to solve the problem of
interaction between an interfacial crack and an arbitrary shape crack inside the matrix or inhomogeneity.
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